
Acta Cryst. (1987). B43, 409-415 

X-ray Diffraction Effects from Randomly Twinned f.c.c. Crystals Undergoing 
Transformation to the h.c.p. Phase 

BY M. T. SEBASTIAN* 

Physics Department, University o f  Cochin, Cochin, 682022, India 

AND P. KRISHNA 

Physics Department, Banaras Hindu University, Varanasi 221005, IndM 

(Received 12 September 1986; accepted 9 April 1987) 

409 

Abstract 

F.c.c. crystals of ZnS often contain a random distribu- 
tion of twin faults. The f.c.c, to h.c.p, transformation 
in this material occurs by a nonrandom insertion 
of deformation faults at two layer separations. The 
kinematical theory of diffraction from f.c.c, crystals 
containing randomly distributed twin faults and 
undergoing solid-state transformation to the h.c.p. 
phase is developed. 

Introduction 

Zinc sulfide exists in two polymorphic forms, the 
sphalerite (3C) with the A B C A B C . . .  packing of 
atomic layers and the wurtzite (2H) with A B A B . . .  
packing. The two forms are related by a reversible 
phase transformation that occurs at 1293 K, the 
wurtzite being the high-temperature modification. 
Recently, Sebastian, Pandey & Krishna (1982) made 
a systematic study of the 2 H - 3 C  transformation in 
ZnS. The 2 H  crystals begin to disorder [Sebastian et 
aL, 1982; Roth, 1960] on annealing at temperatures 
around 570 K and at around 870 K they transformed 
to a disordered twinned 3C structure. On further 
annealing (Sebastian & Krishna, 1984a) it trans- 
formed to a disordered 2 H  structure at about 1320 K. 
Fig. 1 shows the 10.L reciprocal-lattice row of a 
heavily disordered twinned ZnS-3 C crystal recorded 
after annealing and quenching at different tem- 
peratures. On annealing at 970 K, the intensity of the 
diffuse streak decreased. The 2 H  reflections appeared 
on annealing at 1320 K and the crystal transformed 
to a disordered 2 H  at 1370 K. An analysis of the 
diffraction profiles showed (Sebastian et aL, 1982; 
Roth, 1960; Sebastian & Krishna, 1984b) that the 
as-grown and annealed disordered 2H crystals con- 
tain a random distribution of deformation faults 
whereas the as-grown and 3C crystals obtained by 
annealing 2 H  always contain (Sebastian & Krishna, 
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1984a, b) a random distribution of twin (growth) 
faults. 

The insertion of deformation faults at two-layer 
separations can effect the 3 C - 2 H  transformation as 
depicted below: 

Initial structure (3C): A B [ C A B C A B C  . . . .  
AB  ICA BCA . . . .  

A B ] C A B  . . . .  

ABIC . . . .  
A . . . .  

Resulting structure (2H): A B A B A B A B A  . . . .  

The f.c.c, to h.c.p, transformation can be accom- 
plished (Christian, 1951; Kotval & Honeycomb, 1968; 
Fujita & Ueda, 1972) by the movement of (a /6)  (112) 
Shockley partials on alternate (111) planes. Recently, 

i ii 4 

(a) (b) (c) (d) 

Fig. 1. The 10.L reciprocal-lattice row of a disordered twinned 
ZnS-3 C crystal recorded after annealing at successively higher 
temperatures for 1 h. (a) Room temperature, (b) 973 K, (c) 
1323 K, (d) 1373 K (camera radius 3 cm, Cu Ka radiation, 
mag. x3). 
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Lele & Pandey (1985) developed a theoretical model 
to explain the f.c.c.-h.c.p, transformation in cobalt. 
Their model considers an initial untwinned 3 C crystal 
in which deformation faults occur at two-layer separ- 
ations to effect the transformation. This model is not 
applicable to the cubic ZnS crystals grown from the 
vapour phase at temperatures above 1290 K or to 
those obtained from the wurtzite form by solid-state 
transformation since they invariably contain (Sebas- 
tian & Krishna, 1984a, b; Qin, Li & Kuo, 1986) a 
random distribution of twin (growth) faults. The 
intensity of the scattered X-rays from close-packed 
structures containing stacking faults can be calculated 
either by the use of difference equations developed 
by Wilson (1942) or by means of a matrix intensity 
equation introduced by Hendricks & Teller (1942). 
Wilson's difference equation is constructed for the 
probability of finding a kind of layer and later Prasad 
& Lele (1971) constructed difference equations taking 
into account phase shifts of layers in addition to the 
probability. The matrix intensity equation of Hen- 
dricks & Teller was improved slightly by Kakinoki & 
Komura (1952, 1954, 1967). Allegra (1964) showed 
that the matrices can be reduced by taking into 
account phase shifts between adjacent layers. The 
intensity calculations became easier when Gevers 
(1954) and Holloway (1969) showed that the intensity 
could be calculated with the coefficients of the charac- 
teristic equation of the difference equation without 
solving the characteristic equation. Recently, Berliner 
& Werner (1986) introduced a computer modelling 
method for the calculation of the diffracted intensity 
from one-dimensionally disordered structures con- 
taining random stacking faults. In the present paper 
we follow the method of difference equations. The 
theory of X-ray diffraction from randomly twinned 
f.c.c, crystals has been developed by Paterson (1952") 
and Warren (1969). In the present paper we develop 
the theory of X-ray diffraction from randomly twin- 
ned f.c.c, crystals undergoing transformation to the 
h.c.p, phase by the deformation mechanism. 

The theory of X-ray diffraction from a twinned 3C 
structure undergoing transformation to the 2H phase 

Following the notations employed earlier (Sebastian 
& Krishna, 1984c, d; Pandey, Lele & Krishna, 1980), 
we develop the theory from a randomly twin-faulted 
3 C phase undergoing transformation to the 2 H phase 
by the deformation mechanism under the following 
assumptions: 

(i) the crystal is infinite in size and free of distor- 
tions; 

(ii) the scattering power for all the layers is the 
same; 

(iii) there is no change in the layer spacings at the 
faults; 

(iv) the faults extend right across the crystal boun- 
daries; 

(v) the probability (/3) of occurrence of deforma- 
tion faults at two-layer separations is larger than the 
probability (a) of their occurrence at larger separ- 
ations; 

(vi) once a deformation fault occurs on a particular 
layer, the probability of another fault occurring on 
the next layer is negligible; 

(vii) the initial 3C structure may contain a small 
probability y of occurrence of random twin faults. 

Since the (111) close-packed planes of the cubic 
structure become the (0001) planes of the hexagonal 
structure after transformation, we shall use hexagonal 
axes and a three-layered hexagonal unit cell to 
describe the f.c.c, structure. There are two types of 
layers in the perfect f.c.c, and h.c.p, structures denoted 
by 0 and 1 according to whether the stacking offset 
vector is +S~ or - S ,  where Si denotes 

a - a a -  

S,=~[ l l00] ,  S2=~[0110] and S3=~[1010]. 

The perfect 2H and 3C structures can be written as 

A o B I A o B z A o B ~  . . .  

A o B o C o A o B o C o  . . . 

respectively. There are four more types of layers for 
crystals undergoing transformation to the h.c.p, struc- 
ture. Let the subscripts 0 ~ and 11 denote the first layer 
of the slipped stack following a 0-type or 1-type layer 
respectively. It is assumed that the next layer after 
a 0 t- or l~-type layer is unfaulted. One can obtain 
a 2H structure only under this assumption. The next 
layer after 01 or 1 t type is denoted by 0 2 or 12 since 
there is a probability/3 of a fault occurring at these 
layers. We use the following probability trees which 

~ Ao 

• Co ~ i  °' 
/ ~ I , - o l  - -  ° '  

\ 

" C..-c,, 
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consider the transitions from the ( m -  1)th to the 
mth layer with each type of layer at the origin and 
follow Sebastian & Krishna (1984c). 

( m -  1)th layer mth layer 

Bo 

Ao' 

Co 
(I- ~)(1- 3') 

A o ' 
a(1--3') 

A1 
3 ' ( l + a )  

Clt 
a3' 

1 
Bo 2 

BO ' 

Co 
( 1 - / 3 ) ( 1 - 3 ' )  

Aoa 
/3(1-3 ' )  

A1 
3 '(1-/3)  

/33' 

C1 
(1 - a ) ( 1 - 3 ' )  

B 1 , a(1-3 ')  
Bo 

3 ' ( l - a )  

Co, 
or3' 

AI 

J(,,,,ob = a(1 - 3 ' ) J ( m _ l , o ) t O 2 - ÷ " / 3 ( 1  - 3 ' ) J ( m _ l , 0 2 ) t 0 2  

+ o~3'J(rn- 1,1)o92 +/33'Jo.-2.abW2 (3) 

J(,..t,) = a(1 - 3')J(.,-1.1)o)~ +/3(1 - 3')J.._l.abOJa 

+ ot3"J(,,,_~,o)tO~ +/33"J(,,_,,o2)W l (4) 

J(m,Ob = J(,,,-l,0')tol (5) 

J(m,12) = J(m-l,l ')O)2 (6) 

where wl = exp (i27r/3) and w2= exp ( - i27r /3) .  
Let the solution of the system of difference 

equations (1) to (6) be of the form 

S(m,j)  = c;m'~ m >-- O, (7) 

where c s and p are functions of the fault probabilities. 
Since the crystals contain a small amount of twin 
faults higher-order terms in 3' are neglected. Substitut- 
ing (7) in (1) to (6) and eliminating the various c's, 
we finally get the so-called characteristic equation 

p 6 + ( 1 -  a)(1 - 3')p5 

+[(1 - a)2(1 - 23') - 2/3 ( 1 -  3')]p 4 

+[(1 - 23')(a + a / 3 -  2/3)]p 3 

+ [ 2 ( 1 -  o~)(1- 3 3')(a - /3 )+ /32(1-23 ' ) ]02  

+ ( 1 - 3 3 " ) ( / 3 2 - a / 3 ) p + ( a - / 3 ) 2 ( 1 - 4 3 " ) = O .  (8) 

Holloway (1969) obtained an analytical solution for 
the diffracted intensity in terms of the coefficients and 
boundary conditions of the characteristic equation. 
His intensity expression is 

l = f 2 c  ½+ ~" ~., Ah-kTj_kexp(n--j) i 'n 'L--Ao 
• j = l  k=O 

Bit A12 

C l  
( 1 - / 3 ) ( 1 - 3 ' )  

/3(1-3,)  
A ?  Bo 

3"(1 -/3) 
Co ~ 

We get 

J(m,O) = ( 1  - a)(1 - 3 ' ) J ( m _  1,0)tO 1 

+ (1 - / 3 ) ( 1  - 3")J~m-,,e)o,,  

+ Y(1 -/3)J~_l,~bWl + 3'( 1 - a)J(m_ 1,,)¢" 1 

J(m,1) = (1 - a)(1 - 3')J(m_l,1)o)2 

+ (1 - f l)(1 - 3")J(m_l,lZ)al2 

+ 3'(1 -/3)J(m_1,o2)¢02 + 3'(1 - a)J(m-~,o)O)2 

(1) 

(2) 

x A j exp ( i ' t rL )  +c.c. , (9) 
j=0 

where the A's are the coefficients of the characteristic 
equation, the T's are the boundary conditions, f2  is 
the scattering power for a single layer of the structure 
and c is a scale factor. 

In the present case, 

n = 6  

A6 = 1 

A5 = (1 

A4 = (1 

A3 = (1 

A2 - 2( 

A I = ( 1  

Ao 

- a ) ( 1 -  3') 

- a ) 2 ( 1 - 2 7 ) - 2 / 3 ( 1 -  3') 

- 2 3 ' ) [ a  -2/3 + a/3] 

1 - a ) ( 1 -  37)(a - /3)+ f12(1-23') 

-33')(/32- a/3) 
-- (a  - /3 )2(1-  43'). 

Let Wj be the probability of finding a layer with 
subscript j on passing through an arbitrary region of 
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the crystal. From the probability tree we get 

Wo = (1 - or)(1 - y) Wo+(1- /3) (1  - y) Wo: 

+ V ( 1 - 3 )  W~2+ v ( 1 - a )  W, 

W , = ( 1 - a ) ( 1 - v ) W , + ( 1 - / 3 ) ( 1 - y )  W,2 

+ ~,(1 -/3) w e +  ~,(1 -,~) Wo 

Wo, = O~ ( 1 -  .y ) Wo + /3 ( 1 -  .y ) Wo 2 

+ ~.yw,2+ ,~ ,w,  = w e  

W,, = a ( 1 -  y) Wl + /3(1- y) W,2 

+/3~,Wo~+ a~,Wo = w,, 

Wo+ W,+ Wo,+ W,,+ Wo2+ Wl~=l. 

Solving the above equations we get 

Wo = W , = ( 1 - / 3 ) / ( 2 - 2 / 3  + 4 a )  

Wo , =  W~,= Wo : =  W ~ = a / ( 2 - 2 f l + 4 a ) .  

The boundary conditions can now be obtained by 
considering all possible sequences starting with layers 
of each type 0, 1, 01, 11, 02 and 12 at the origin and 
writing T in each case 

7",, = Z Wj exp (iq~,,)j. 
J 

THUS, 

7",=-½ 

Tz = ( -1  + 4 a  +/3 - 3 a y - 3 / 3 y + 3 y ) / ( 2 - 2 / 3  + 4 a )  

T3 = (2 - 5or - 2/3 + 3 a/3 - 6y + 6/3y - 9cq3y 

+ 9ay) /  ( 2 -  2/3 + 4a ) 

T4 = ( -1  +/3 - 2or + 30~ 2 + 6a/3 - 3 a 2/3 + 3 y - 6az y 

+9oty-  3/3y + 6cr2/3y- 15a/3y)/(2-2/3 + 4 a )  

T5 = (-1 +13 + 13a - 18a:  - 18a/3 + 3c~/3:+ 18a2/3 

+ 6a 3 -  6a3/3 - 5 7 a y -  24aSy 

+ 24a 3/3y - 69a:/3y + 69a2y + 72 cr/3y 

- 15a /3 :y -6 /3y  + 6y)/(2 - 2/3 + 4a).  

Substituting the coefficients (A's) and the five boun- 
dary conditions (T's)  in (9) and carrying out the 
summations we get the intensity expression 

I = f 2  c{[½+ T~ exp (5i'n'L) + ( T: + A57"1) exp (4irrL) 

+(T3+AsT2+A4T1) exp (3irrL) 

+ ( T4 + As Ts + A4 T2 + A3 T~) exp (2iTrL) 

+ ( Ts + As T4 + A4 Ts + A3 T2 

+ A2 T~) exp (i,rrL)- Ao] 

x [Ao+ AI exp (irtL) + A2 exp (2izrL) 

+ m 3 exp (3 irrL) + A 4 exp (4irrL) 

+ A5 exp (5 irrL) + exp (6iTrL)] -1 

+ complex conjugate}. (10) 

Prediction of diffraction effects 

The variation of the diffracted intensity along the 
10. L reciprocal-lattice row for different values of a, 
fl and 2, calculated from (10) in steps of AL = 0.01 
is depicted in Fig. 2. The reflections along reciprocal- 
lattice rows with H - K  = 0 (mod 3) are unaffected by 
the transformation and remain sharp throughout. For 
reflections with H - K  SO (rood 3), the different 
diffraction effects are clearly visible in the figures and 
can be described as follows: 

(i) For small values of a and Y (<0.08): The 3C 
reflections remain almost unbroadened and new 
reflections start appearing at the 2H positions as fl 
increases to 0.6. The 2H peaks are initially broad 
and become sharper as fl increases to 0.9. The resul- 
tant structure shows the co-existence of 3C and 2H 
peaks (see Fig. 2a). 

(ii) For y =0.05 and a = 0.1 to 0.2: The 3C reflec- 
tions are initially broadened and are shifted towards 
the neighbouring 2H positions. New reflections cor- 
responding to the 2H structure start appearing as fl 
increases to 0.6. As the transformation proceeds (/3 
increases), the shift of the 3C peaks decreases and 
the peaks approach their normal positions L = ±~, ±4 
(see Fig. 2b). 

(iii) For 3' = 0-1 and ce _> 0.1: The 3 C reflections 
are greatly broadened and shifted towards the neigh- 
bouring 2H peaks. As the values of -y and a increase, 
the shift of the 3C peaks and their broadening 
increases. The resultant 2H structure contains a very 
small fraction of the 3C fragments. 

(iv) For 3' = 0.05 and a =/3: For this case the 3 C 
reflections are initially greatly broadened and con- 
siderably shifted towards the nearby 2H positions. 
As a (=/3)  increases, the L -- ±-~ and L = ±~ of the 3 C 
structure approach each other and become a single 
peak at L = 1 for/3 -- 0.9. In this particular case there 
is no co-existence of the 2H and the 3C peaks (see 
Fig. 2c). 

(v) For y = 0: This corresponds to the case where 
the initial 3C structure is unfaulted (see Fig. 2d). 

The intensity distribution shown in Fig. 1 is com- 
puted without considering f2  which is the scattering 
power for a single layer of structure and can as such 
be used to compare the phase transformation in 
cobalt. In order to compare the intensity distribution 
in partially transformed ZnS, one should take into 
account the scattering factor f2. For ZnS, 

f 2 =  f~n+ f~ + 2fznfs COS 27rLP, 

where P = 3/4n and n is the number of layers in the 
unit cell. 

Discussion 

The solid-state transformations in ZnS have been 
explained (Daniels, 1966; Mardix & Steinberger, 
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x , . _ , /  x,. / \ " ~X p - -0 .9  

~ , ~ ~  p:oB 
p : 0 6  

p :0 .4  
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n 
II 
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I I 
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I 

' i q J h 

^, ~ , ,^ [ ', 
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101 102 
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(b) 
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p:o.8 
p : 0 6  

p:o.4 

p:o.2 

, , ~', I~ , j . . . _J  , , u , ,  i . ,  

. . . . . . .  - ~  i i I ~ I- . . . . . . . .  " 
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100 10.1 10.2 
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(c) 

3 : 0 . 9  

} ,=0 .8  

3 = 0 . 6  

1 = 0 . 4  

3 : 0 . 2  

1965/66) in terms of a periodic slip mechanism which 
envisages the expansion of a stacking fault around a 
screw dislocation and is akin to the pole mechanism 
suggested (Seeger, 1953) for the transformations in 
cobalt. Such a mechanism cannot operate in a ran- 

hcp 
10.0 

I Z 
i t 
ii 
I I 
II 

:I 
t l  

A 
\ e \ / ", 

" ~ - - -  '¢ / '  \ . . . . . .  J t a : O . 9  

;ii "-i ,. ......   iiii_i-iiiii1 _ . . . . . . . .  / = 0 . 2  
hcp fcc  hcp 
10.1 10.2 

L'---~ 

(d) 

hcp 
10.0 

'1 
I I  

,q I J 

, , , , j  , . . ,  / i  
. . . . . . .  ~ - ~  x _ / " p : o . g  

\ ~ / / p : o a  / " . . _  / "- / \ 

/ x - - 1  p=o.6 
p : o . 4  

" I "--I-'" I . . . . . . . . .  L . . . . .  _ J  p:02 
f cc  hcp f c c  hcp  

10.1 L - ~  10.2 

(e) 

Fig. 2. Calculated variation of  the diffracted intensity along the 
10.L reciprocal-lattice row for a twinned 3C structure under- 
going transformation to the 2H structure with fl = 0.2, 0.4, 0.6, 
0.8 and 0.9. The calculated curves have been shifted vertically 
for different values of /3  for clarity. (a) a =0-04, 3,=0.05; (b) 
a =0.1,  3,=0-05; (c) a=O.1 ,  3,=0.1; (d) a= /3 ,  3,=0.05; (e) 
a =0"1, 3,=0.0.  



414 FCC TO HCP TRANSFORMATION IN ZnS 

domly twinned 3C structure as shown below: 

Twinned 3 C: A B I C A B C B _ A C B A C  . . . .  

A B  ICA C_ B A  C B A  . . . .  

A B  _AC B A C B  . . . .  

B A  [CB A C . . . .  

A C I B A  . . . .  

CB  . . . .  

Resulting structure: A B A B A B _ B A A C C B  . . . .  

Thus the operation of the screw dislocation 
mechanism in a randomly twinned 3 C structure vio- 
lates the rules of close packing. In the absence of a 
screw dislocation the 3 C - 2 H  transformation can 
occur by the insertion of deformation faults at two 
layer separations• Fujita & Ueda (1972) made a trans- 
mission electron microscope study of the mechanism 
of formation of a ~:-phase crystal induced by deforma- 
tion in 18/8-type stainless steels. The f.c.c. (y) to 
h.c.p. (~:) phase transformation occurs when stacking 
faults are regularly formed on every second layer of 
{111} slip planes in an f.c.c, lattice. This can occur 
by two different processes: (i) regular insertion of 
stacking faults; (ii) irregular insertion of stacking 

2 9 3 K  .'- . :  

: • 

¢" . ,  
..." . :  

. . . .  , • . "  _'.,,....,,. - . .  pip.e.. ~.; , . ~ l G , r ~ % . t . . . d ~ a } . . f . . l . ?  i . .  | , • t ~  • ' 1  " " ,  " 

1348 K : 

o, "q, 

...:,;..:..~f:*...~..r.~....~;-.', *''~" """-" :- .;"':,,~ ~.... 
! 

1273 K •" 

hcp fcc hcp 
L , 

Fig. 3. Intensity profiles (10.L) ofa  ZnS crystal recorded at 293 K, 
after heating to 1373 K and cooling to 1348 K, and then at 1273 K 
(after Frey et al., 1986). 

faults at first and then a gradual change to the regular 
sequence. In stainless steel, the second process is 
found to occur since there is considerable diffuse 
intensity indicating a large number of stacking faults 
and the f.c.c, spots are broadened. The h.c.p, spots 
appear at a later stage on this. The screw dislocation 
mechanism corresponds to the first process. 

The movement of (a/6)(112) Shockley partials on 
alternate (111) planes can effect the 3 C - 2 H  transfor- 
mation. In the stress-induced or in the periodic slip 
mechanism f.c.c.-h.c.p, transformation, only one 
(a/6)(112) shear operates on a given set of {111} 
planes producing tilting or kinking of the crystals. In 
specimens in which transformation is induced by 
heating, all three shears (a/6)(112) occur with equal 
probability producing no macroscopic kinks. 

As predicted by the theory, Fig. 1 shows the co- 
existence of the 2H and 3C reflections at an inter- 
mediate stage. The values of a,/3 and y change from 
crystal to crystal and also in the same crystal after 
different thermal treatment and quenching. The 
photometric curves recorded by Frey, Jagodzinski & 
Steger (1986) from a ZnS-3C crystal partially trans- 
formed to 2H are in agreement with the theoretical 
profiles (Fig. 3). A quantitative comparison of the 
calculated diffraction effects with those recorded 
experimentally from a partially transformed ZnS crys- 
tal using single-crystal diffractometry would enable 
a final and better confirmation of the proposed model. 
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Abstract 
The structure of the monoclinic [a = 4.4566 (5), b = 
3.0022 (2), c=4.4760(5)  A,, /3=95.609 (8) °, Z = 2 ]  
form of/3-V2H, formerly described in space group 
Cm [Noda, Masumoto, Koike, Suzuki & Sato (1986). 
Acta Cryst. B42, 529-533] is properly described in 
C2/m. The crystal used for the original intensity 
measurements was surely twinned, across the ab 
plane, so that all reflections of the type 5n, k, l were 
composite; the twin component was about 55% as 
large as the main crystal. When the intensities were 
corrected for this twinning, refinement in space group 
C2/m led to an R of 0.023 for 668 reflections, com- 
pared to 0.080 for the earlier investigation. Despite 
the improvement in refinement, the H atom could not 
be located from the X-ray data. 

Introduction 
The structure of the monoclinic (unstressed) form of 
/3-V2H was described (Noda, Masumoto, Koike, 
Suzuki & Sato, 1986; NMKSS) in space group Cm 
with two formula units per cell [a =4.4566 (5), b = 
3.0022 (2), c = 4.4760 (5) A,/3 =95.609 (8)°]. In this 
description, the V atoms were placed in two indepen- 
dent sites on a mirror plane and the H atoms were 
ignored. In terms of atom positions, such an arrange- 
ment can be equally well described in C2/m with a 
twofold axis midway between the V atoms. However, 
NMKSS reported that space groups C2/m and C2 
could be ruled out 'on the basis of Hamilton's test' 
and their reported structure showed very large 
differences in the U 0 terms of the two V atoms which 

* Contribution No. 7554 from the A. A. Noyes Laboratory of 
Chemical Physics. I thank the National Institutes of Health for 
financial support (Grant No. GM 16966). 

could, in principle, lower the symmetry to Cm. But 
such differences seemed very surprising, especially in 
view of the simplicity of the structure. Accordingly, 
I have reinvestigated the structure and shown that it 
is properly described in C2/m. During the process, 
it became clear that the crystal used for intensity 
measurements included a twin component that con- 
tributed in a systematic way to many reflections; when 
the ~tensities were corrected for this twinning, 
refinement led to an R of 0.023 compared to the 0.080 
reported by NMKSS for the Cm description. 

Experimental 

Values of Fo (corrected for extinction) and tr(Fo) 
for 672 reflections were recovered from Supplemen- 
tary Publication No. SUP 42832, and the starting 
model in C2/m was quickly derived by averaging the 
coordinates and U U values reported in Table 3 of 
NMKSS. Preliminary least-squares refinement led to 
an R of 0.074 - already better than the 0.080 of 
NMKSS. However, reflections with h=5n were 
clearly aberrant: R for these 145 reflections was 0.18, 
compared to 0.04 for the remaining reflections, and 
their values of F(obs.) averaged about 22% larger 
than F(cal.). That this effect could be due to twinning 
was confirmed by the fact that the reciprocal lattice 
maps onto itself, with an 'index' of 5, if it is reflected 
across the ab plane (or, alternatively, rotated by 180 ° 
about the a axis): reflections of the type 5n, k, l of 
one lattice fall very nearly on top of 5n, k ( o r - k ) ,  
- l -  n of the other. 

In order to correct for this apparent twinning, I 
first refined the structure (including the scale factor) 
on the basis of the reflections with h # 5n; R for these 
reflections became 0.0202 and the goodness-of-fit was 
1.85. The intensities for those with h = 5n were then 
adjusted by dividing F2(obs.) by 1.55 for h = 0 and, 
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